COSTOS

Precio regular: Bs. 250 Precio con Descuento:

Estudiantes de los programas de la Unidad de Postgrado	Bs. 200
Estudiantes de la Carrera de Matemática	Bs. 100
Estudiantes de otras carreras de la Facultad de Cs. Puras y Naturales	Bs. 150
Público en general	Bs. 250

Escanea el QR e inscríbete:

MISIÓN

Capacitar y actualizar a los profesionales matemáticos y de Áreas afines en el uso de software matemáticos específicos como son: latex, matlab, mathematica y geómetra. Adicionalmente, en el lenguaje de programación Python exclusivo para el manejo de datos y su mejor desempeño en el ámbito matemático.

OBJETIVO

El objetivo es capacitar y actualizar a los participantes de los diferentes programas ofertados por la Unidad de Postgrado de la Carrera de Matemática.

INSCRIPCIÓN

REQUISITOS:

- Llenar el formulario de inscripción: (https://forms.gle/aggWktvnz24NJCXE7).
- Fotocopia Carnet de Identidad
- Fotocopia matrícula
- Fotocopia simple del título profesional
- ♦ Fotocopia simple del título académico.
- Correo Gmail con su nombre y apellido.
- Conexión ilimitada de internet para todas las actividades.

Entrega de documentación de manera física o digital, en la Oficina de Postgrado, para su revisión y posterior habilitación en el Sistema para la cancelación del curso.

INFORMACIÓN GENERAL

Coordinación

Unidad de Postgrado de la Carrera de Matemática

Dirección

Av. Villazón Nº 1995

Monoblock Central (UMSA)

Edificio Antiguo

Carrera de Matemática Oficina de Postgrado Planta Baja

Contactos

Teléfono: (591) 2-2612943

Cel.: 63184773

E-mail

pgamatumsa@fcpn.edu.bo

Página Web

http://pgmat.fcpn.edu.bo/

Redes Sociales

Postgrado Autofinanciado en Matemática - Carrera de Matemática

Lunes a Viernes: 09:00 a 17:00 (horario continuo)

UNIVERSIDAD MAYOR DE SAN ANDRÉS FACULTAD DE CIENCIAS PURAS Y NATURALES CARRERA DE MATEMÁTICA

Unidad de Postgrado

CURSO DE: "MATHEMATICA"

(V VERSIÓN A DISTANCIA)

INSCRIPCIONES ABIERTAS

La Paz - Bolivia

POSTGRADO EN MATEMÁTICA

CRONOGRAMA

Duración: 15 horas (5 sesiones de 3 horas)

Inicio de Clases: 14 de Julio

Horarios de Clases: solo sábados

De 17:00 a 20:00

MODALIDAD

Virtual

Aula virtual "Classroom"

(http://aulapgmat.fcpn.edu.bo)

Sesiones por la plataforma Zoom

CONTENIDOS MÍNIMOS DEL: CURSO DE ACTUALIZACIÓN MATHEMATICA

Sesión 1: Fundamentos del entorno y manipulación simbólica

Objetivos:

- Familiarizarse con el entorno de trabajo de Mathematica.
- Aprender a realizar manipulaciones algebraicas y simbólicas básicas.

Contenidos:

- 1) Interfaz de Mathematica y cuadernos (notebooks).
- 2) Entrada y salida de expresiones matemáticas.
- 3) Evaluación simbólica y numérica.
- 4) Evaluación retardada (:=) y evaluación inmediata (=).
- 5) Manipulación de expresiones algebraicas: expandir, factorizar, simplificar.
- 6) Funciones definidas por el usuario.

Sesión 2: Cálculo simbólico y visualización

Objetivos:

- Utilizar Mathematica para realizar cálculo simbólico y numérico.
- Visualizar funciones y datos.

Contenidos:

- 1) Derivadas, integrales, límites y series.
- 2) Resolución de ecuaciones y sistemas simbólicos
- 3) Gráficas 2D y 3D: Plot, Plot3D, ContourPlot.
- 4) Visualización incorporando Animate o Manipulate para ver el efecto de parámetros.
- 5) Manipulación y exportación de gráficos.
- Ejercicio aplicado: estudio gráfico de funciones con parámetros.

Sesión 3: Álgebra lineal y programación funcional

Objetivos:

- ◆ Aplicar Mathematica a problemas de álgebra lineal simbólica y numérica.
- ◆ Utilizar programación funcional para trabajar con listas y estructuras.

Contenidos:

- 1) Vectores, matrices, operaciones básicas.
- 2) Determinantes, inversas, valores y vectores propios.
- 3) Funciones puras, Map, Apply, Table, Select.
- Programación con patrones y reglas de transformación.
- Comparación entre operaciones simbólicas y numéricas con MatrixForm, Chop, N.
- 6) Ejercicio aplicado: solución de sistemas lineales y análisis de estabilidad.

Sesión 4: Ecuaciones diferenciales y simulaciones dinámicas

Objetivos:

- Resolver ecuaciones diferenciales ordinarias y sistemas dinámicos.
- ◆ Visualizar trayectorias y comportamientos dinámicos.

Contenidos:

- 1) DSolve y NDSolve para EDOs.
- 2) Modelado de sistemas con ecuaciones diferenciales.
- 3) PhasePlot y gráficas paramétricas.
- Visualización de campos vectoriales con Stream-Plot.
- 5) Interpretación de sol<mark>ucio</mark>nes numéricas con InterpolationFunction.
- 6) Manipulate para simulaciones interactivas.
- Ejercicio aplicado: dinámica de sistemas ecológicos o físicos.

Sesión 5: Modelado, ajuste de datos y automatización

Objetivos:

- Ajustar modelos a datos numéricos y realizar simulaciones.
- Automatizar tareas y generar documentos reproducibles.

Contenidos:

- 1) Importación de datos: CSV, Excel, listas.
- Dataset, para trabajar con estructuras tabulares.
- 3) Interpolación y ajuste de funciones.
- 4) Minimize y FindFit para ajuste de parámetros.
- Creación de informes automáticos con notebooks dinámicos.
- Ejercicio aplicado: construcción de un modelo predictivo simple a partir de datos.

Material complementario sugerido:

- Acceso a Wolfram Mathematica (versión desktop o Wolfram Cloud)
- Cuadernos base en formato .nb con ejemplos interactivos
- Conjuntos de datos y scripts para simulaciones